Getting To Know Your

Lacto

Josh Armagost and Dan Ramos The Brewing Science Institute

Overview

- What Is Lacto?
- Uses in the food industry
- Metabolism
- pH and Total Acidity (TA)
- Uses in brewing
 - Kettle souring
 - Mixed fermentations
- Summary

Sour Beers: A Growing Trend

- A dying style saved by American Craft Brewers
- Recent history has shown an explosion

in sour styles!

- 2002 GABF (First Sour Category): 15 entries
- 2010 GABF: 149 entries
- 2015 GABF: 497 entries
- 2018 GABF: 820 entries

Historical Sour Beers

- Pre-Pasteur and hops All beers were sour
- Post-Pasteur Sour Beer Styles:
 - Lambics (spontaneous fermentation)
 - Berliner Weisse (Lactobacillus)
 - Gose (Lactobacillus)
 - Flemish Red (mixed culture)
 - Flemish Oud Bruin (mixed culture)

Sources of Acid In Sour Beer

- Lactic Acid Lactic Acid Bacteria (LAB) Lactobacillus and Pediococcus
- Acetic Acid Acetobacter and Brettanomyces
- Citric Acid *Saccharomyces* and fruit
- Malic Acid Saccharomyces and fruit

What Is Lacto?

- Lactic Acid Bacteria (LAB) (genera)
 - Lactococcus
 - Enterococcus
 - Oenococcus
 - Pediococcus
 - Streptococcus
 - Leuconostoc
 - Lactobacillus

L. delbrueckii

Lactic Acid Bacteria

- LAB produce lactic acid as a product of fermentation.
- Over 100 species and subspecies of LAB
- Genus *Lactobacillus* represents largest group within LAB.
- All LAB are gram-positive

Lactic Acid Bacteria

- Used extensively in the food industry for:
 - Food preservation
 - Starters for dairy products (cheese and yogurt)
 - Fermented vegetables and meats (sauerkraut)
 - Probiotics (L. casei and L. paracasei)
 - Inoculant for silage/cattle feed (L. acidophilus)

Lactic Acid Bacteria

- Generally considered a contaminant when present in food processes not requiring fermentation
- Conversely, LAB are essential in the process of many fermented foods and bio-products
- Using LAB in the food process can be thought of as a "controlled spoilage" to produce desired results under carefully monitored parameters.

Lactobacillus

- Aerotolerant- does not require oxygen but will still operate under aerobic conditions
- Highly productive in temperatures between 100°F and 120°F (38-49°C). Goes dormant below 55°F (13°C)
- Inhibited by as few as 8 IBUs (some strains are more hop tolerant than others)
- Fairly alcohol intolerant (again, depending on strain)

Metabolism

- LAB produce lactic acid using one of two metabolic pathways:
- Homofermentative LAB use glucose to primarily produce lactic acid as a by-product of fermentation
- Heterofermentative LAB use glucose to produce lactic acid, as well as acetic acid, CO₂, and ethanol as by-products of fermentation

Homofermentative LAB

1 Mole Glucose — 2 Moles Lactate

Homofermentative LAB

• Lactobacillus, Lactococcus, Enterococcus, Streptococcus, and Pediococcus

• Common brewing strains: *L. delbrueckii* and *Pediococcus damnosus*

• Produces a "clean" lactic flavor

Heterofermentative LAB

1 Mole Ethanol

Heterofermentative LAB

- Lactobacillus, Leuconostoc, Oenococcus, Weissella
- Common brewing strains: *L. brevis* and *L. buchneri*
- Produces the same lactic acid present in homolactic fermentation, but is said to be a harsher sourness. This possibly due to the subthreshold levels of acetic acid also present as a byproduct of heterolactic fermentation

Facultatively Heterofermentative LAB

- Try saying that 5 times fast ^^^
- Will perform homolactic fermentation in conditions with an abundance of nutrients.
- In nutrient poor conditions, will perform heterolactic fermentation to produce CO₂ and ethanol as additional by-products.
- Common brewing strains: *L. casei* and *L. paracasei*

- **Starting Gravity** all species are different and variable.
 - *e.g. L. delbrueckii* 10 Plato or less but with time it has soured a 13 Plato wort.

- **Starting Gravity** all species are different and variable.
 - *e.g. L. delbrueckii* 10 Plato or less but with time it has soured a 13 Plato wort.
- Hop Tolerance all species are different and variable.
 - Generally thought to be below 8 IBUs for many species.
 - *L. brevis* is said to be more hop tolerant than other lacto strains (horA / horC genes?)

- **Starting Gravity** all species are different and variable.
 - *e.g. L. delbrueckii* 10 Plato or less but with time it has soured a 13 Plato wort.
- Hop Tolerance all species are different and variable.
 - Generally thought to be below 8 IBUs for many species.
 - *L. brevis* is said to be more hop tolerant than other lacto strains (horA / horC genes?)
- Alcohol Tolerance all species are different and variable.
 ???

- **Starting Gravity** all species are different and variable.
 - *e.g. L. delbrueckii* 10 Plato or less but with time it has soured a 13 Plato wort.
- Hop Tolerance all species are different and variable.
 - Generally thought to be below 8 IBUs for many species.
 - *L. brevis* is said to be more hop tolerant than other lacto strains (horA / horC genes?)
- Alcohol Tolerance all species are different and variable.
 ???
- Adaptability it has been shown that through repeated incremental culturing you can increase the tolerance of some *Lactobacillus spp.*

Managing Lacto in the Brewery

- Cell counting bacteria is difficult and expensive to obtain reliably. Pitch by volume instead.
- Commercial pitch or 4-12% volume of harvested sour wort.
- Bacterial health is important for it's effectiveness.
- To maintain health, feed un-hopped, low gravity wort.

Measuring Acidity

- Sensory can be misleading
- pH strips inaccurate (place them in the garbage)
- pH meter accurate, but not the whole story
- Titratable Acidity best method for measuring perceived acidity

WARNING! **A FLASHBACK** TO **CHEMISTRY** CLASS!!!

What is an Acid?

 An acid is any compound that disassociates in an aqueous solution increasing the concentration of Hydrogen ions.

Organic Acids in Beer are Weak Acids

Weak Acid

Strong Acid

Titratable Acidity vs pH

• pH only measures the free Hydrogen ions.

• Titratable Acidity (TA) measures all Hydrogen ions associated and dissociated.

• What's the difference? We taste all the acid!

Titratable Acidity vs. pH: An Experiment

TA vs. pH Experiment

- Five popular sour beers selected
- Measured variables (ASBC methods):
 - pH
 - TA
 - F.G.
- Tasting panel to rate "sourness" on a scale of 1 to 10 (Eight willing participants)

THE Sour BEERS

Results:

Russian River Supplication FG: 1.002 TA: 11.39 g/l pH: 3.27 Avg. Sourness Rating: 6.75 Russian River Consecration FG: 1.002 TA: 11.16 g/l pH: 3.42 Avg. Sourness Rating: 8.25 Russian River Beatification FG: 1.001 TA: 9.18 g/l pH: 3.33 Avg. Sourness Rating: 6.38

Rodenbach Grand Cru

FG: 1.009 TA: 8.98 g/l pH: 3.38 Avg. Sourness Rating: 6.13 Timmerman's Lambicus Blanche

FG: 1.009 TA: 6.95 g/l pH: 3.27 Avg. Sourness Rating: 3.25 **Note:** "Avg. Sourness Rating" is a subjective measure of perceived acidity by tasting panel on a scale of 1 to 10.

Considerations

- There are many factors that can influence perceived acidity:
 - -ABV
 - Residual Sweetness
 - Non-acidic flavor compounds (esters, phenols, etc.)
 - Subjective bias, not all palates are created equal
 - Types of acids present

Blending Considerations

- Blending by pH is difficult because it is a logarithmic scale. E.g. a 50/50 blend of wort at 5.3pH and 3.1pH results in a wort of 3.5pH.
- TA serves as a better indicator for blending to a target acidity.

Sour Beer Production Methods

- Pre-boil wort souring
 - Sour mash (use with caution)
 - Kettle Souring

- Post-boil souring
 - Primary mixed fermentation inoculation
 - Primary yeast fermentation Secondary bacteria inoculation
 - Spontaneous Fermentation

Pre-Boil Wort Souring

- Aka Kettle Souring
- Lactobacillus is added to wort prior to boiling.
- Souring takes place within the first 12-96 hours
- pH of 3.2-3.4 can be achieved within first 24 hours under optimal conditions

PURE CULTURE

Brew Kettle (or Dedicated Souring Vessel)

 Attemperate Lacto to pitching temperature on brew day (110-115°F)

Produce wort as you normally would

 Lower pH of wort to below 4.5 to inhibit enterobacter growth (acid malt or food grade acid)

 Pasteurize wort by boiling for 5 minutes

- Pasteurize wort by boiling for 5 minutes
- Cool wort to a target temperature • of 110-115°F, pitch *Lactobacillus*

- Pasteurize wort by boiling for 5 minutes
- Cool wort to a target temperature of 110-115°F, pitch *Lactobacillus*
- Maintain temperatures between 110°F and 115°F during souring

- Pasteurize wort by boiling for 5 minutes
- Cool wort to a target temperature of 110-115°F, pitch *Lactobacillus*
- Maintain temperatures between 110°F and 115°F during souring
- If possible, blanket wort with CO₂ to inhibit aerobic bacteria

Advantages of Kettle Souring

- Speed: Lacto is able to sour wort within days of inoculation rather than weeks as with other souring methods
- Lactobacillus is added before hop additions and thus growth is not inhibited by bitterness
- pH and Total Acidity (TA) are easy to monitor
- Souring can be halted by simply bringing the wort to a boil

Advantages of Kettle Souring

• Low risk of cross contamination as the souring is constrained to hot-side brewing operations

Disadvantages of Kettle Souring

 Can tie up brewing operations while souring is in progress

• Not able to produce same complexity as an aged sour beer (No kettle soured lambics)

 Not recommended to harvest and re-pitch yeast from kettle soured beers

Kettle Souring Recap

- Attemperate Lacto (No really, do it)
- Design recipe for Lacto (gravity thresholds)
- Lower wort pH to <4.5 to inhibit microbial growth (acidulated malt or food grade acid)
- Boil for 5 minutes to pasteurize wort
- Cool wort to 110° 115°F and maintain during souring
- Purge kettle with CO₂ and cap the stack if possible

Mixed Fermentations

Goose Island Barrel Room

Traditional Long Fermenting Method

- Primary saccharomyces fermentation
- Secondary Brett/Bacteria Fermentation

Traditional Long Fermenting Method

- Primary saccharomyces fermentation
- Secondary Brett/Bacteria Fermentation
- Pro minimizes contamination risk
- Pro minimizes time in FV

Traditional Long Fermenting Method

- Primary saccharomyces fermentation
- Secondary Brett/Bacteria Fermentation
- Pro minimizes contamination risk
- Pro minimizes time in FV
- Con-long aging process 6 months 3 years
- Con less controllable

Primary Mixed Fermentation (Faster)

• Pitching Lacto with a Brett or Sacch strain.

- Pitching Lacto with a Brett or Sacch strain.
- If you're worried about contamination ferment in barrels. Trub build up is a problem.

- Pitching Lacto with a Brett or Sacch strain.
- If you're worried about contamination ferment in barrels. Trub build up is a problem.
- With good CIP practices, and having sour specific gaskets and hoses, FV is an option.

- Pitching Lacto with a Brett or Sacch strain.
- If you're worried about contamination ferment in barrels. Trub build up is a problem.
- With good CIP practices, and having sour specific gaskets and hoses, FV is an option.
- Starting in the FV gives the flexibility of splitting finished beer into barrels with different adjunct additions.

• With experimentation you can control acidity

- With experimentation you can control acidity
- Low acidity pitch yeast and Lacto simultaneously at yeast fermentation temp.
 - Yeast will quickly out-compete Lacto for nutrients and food

- With experimentation you can control acidity
- Low acidity pitch yeast and Lacto simultaneously at yeast fermentation temp.
 - Yeast will quickly outcompete Lacto for nutrients and food
- Higher Acidity Give the Lacto a head start.
 KO at 110-120F and pitch Lacto. After 24-72 hours cool wort to yeast temps and pitch yeast

Spontaneous Fermentation

GO WILD!!!

Recap:

- LAB have many practical uses in the production of sour beers
 - Souring beer is a method of "controlled spoilage"
 - Just like yeast, bacteria require specific

parameters to perform optimally

- Get to know your specific lacto strain!

Recap:

 Various brewing methods available to produce sour beers depending on your needs

– What are your goals?

- Speed? Sourness? Complexity? Tradition? Low contamination risk?
- Let your goals determine the methods you use

Recap:

- Titratable Acidity is a better measure of perceived acidity than just pH alone
 - How you quantify your "sourness" matters
 - The lowest pH beer is not always the most sour tasting beer
 - We taste all of the acids!

Questions?

CHEERS!

