

Cleaning and Sanitizing in the Brewery

Bryan Pearson The Brewing Science Institute

What are typical soils found in the Brewery

Protein

Carbohydrates

Scale

Cleaning in the Brewery

It takes Energy to clean

- You can use Mechanical Energy
 - You can use Chemical Energy

or

A combination of Both

Mechanical Energy

Hand scrubbing with an abrasive pad

 Impingement with a directed jet of high pressure water

Chemical Energy

• Use of specialty formulated detergents to remove specific soil loads.

Commonly used Cleaners in the Brewery

- Caustic Soda based Cleaners
- Non-Caustic Cleaners
- Acid based Cleaners

The most effective Cleaning method in the Brewery is a combination of both

Mechanical and Chemical Energy

Caustic Soda

- Sodium or Potassium Hydroxide (NaOH or KOH)
- Use in concentrations between 1%-4%
- Use at temperatures between
 120°F 160°F (50°C 70°C)
- CIP for 15 30 minutes
- Can be combined with Sodium Hypochlorite with caution.

Caustic Soda

<u>Advantages</u>

- Good on proteins and carbohydrates
- Inexpensive, especially if built in the brewery
- Can be re-used

Caustic Soda

- Can set Beerstone
- Hard on the Brewer Dangerous
- Must be neutralized before disposing
- Higher temperatures needed for good effect
- Can't be used on "soft" metals
- Doesn't rinse well

Non Caustic Cleaners

Typical Ingredients

Sodium Carbonate and Sodium Metasilicate

- Use in concentrations of 1-2 oz. per gallon of water
- Use at temperatures between
 70°F 180°F (20°C 82°C)
- CIP for 30 45 minutes

Non Caustic Cleaners

<u>Advantages</u>

- Doesn't set Beerstone
- Good cleaning on Proteins & Carbohydrates
- Lower temperatures can be used
- Can be use on "soft" metals
- Rinses well
- Safer on the Brewer

Non Caustic Cleaners

- Can't be reused
- Expensive
- Doesn't work well on antifoams and oils
- Can take more water to rinse due to buffering capacity

Acid Cleaners

Typical Ingredients Phosphoric and Nitric Acid Blend

- Use in concentrations of 1% 3%
- Use at temperatures between 120°F - 140°F (50°C - 60°C)
- CIP for 15 30 minutes

Acid Cleaners

Advantages

- Nitric is an oxidizing acid
- Good cleaner
- Removes beerstone
- Moderate cost
- Re-passivates Stainless Steel
- Not neutralized by CO₂

Acid Cleaners

- Can't be used on "soft" metals
- Hard on Brewers Dangerous
- Must be used at high temperatures
- Nitric acid off-gasses above 140°F

Sanitizing in the Brewery

What is a sanitizer?

Sanitizers are substances that reduce the microbiological load to below a tolerable level. 5 log reduction in Bacteria 99.999% reduction

What is Sterilizing? The <u>complete</u> elimination of all microorganisms.

Sanitizers in the Brewery

- Commonly used Sanitizers in the Brewery
 - Bleach
 - Peroxyacetic Acid aka Peracetic Acid
 - Phosphoric Acid/Anionic Surfactant
 - Iodaphor
 - Chlorine Dioxide
 - Pasteurization

Bleach

Sodium Hypochlorite

- Use in concentrations of about 1%
- Use at room temperature

Bleach

Advantages

Inexpensive and readily available Good kill spectrum

Bleach

Disadvantages

Not a true post rinse sanitizer Can leave detectable flavor in beer Corrosive to Stainless Steel Can produce toxic THM's

Peroxyacetic Acid

Acetic Acid and Hydrogen Peroxide

- Use concentrations of about 100-200ppm
- Use at temperatures from 32°F to 105°F

Peroxyacetic Acid

<u>Advantages</u>

- Good kill spectrum
- Kills by oxidation
- Breaks down to acetic acid and water
- Doesn't flavor beer
- Good bottle rinse

Peroxyacetic Acid

- Doesn't work well with soil load
- Corrosive to "soft" metals

Phosphoric Acid/Anionic Surfactant

<u>Advantages</u>

- Removes beerstone well (also Nitric blends)
- Good Kill spectrum
- Inexpensive, especially if built in the brewery
- Doesn't flavor beer

Phosphoric Acid/Anionic Surfactant

- Works best at high temperatures
- Corrosive on "soft" metals
- Foams too much for CIP

lodaphor

- Use in concentrations of about 12-25ppm
- Use at temperatures from 50°F to 105°F

lodaphor

Advantages

- Good kill Spectrum
- Color is an indication of strength
- Solutions can be sweetened

lodaphor

- Doesn't work well with a soil load
- Stains plastics and other materials
- If overused it can flavor beer

Chlorine Dioxide

Stabilized Sodium Chlorite

- Use in concentrations of 50 100ppm
- Use at temperatures from 32°F to 70°F

Chlorine Dioxide

<u>Advantages</u>

- An O₂ donor
- More environmentally friendly than other sanitizers
- Doesn't impart Chlorine like flavor in beer
- It is forgiving in the amount used
- Doesn't harm yeast
- Breaks down to H₂O and NaCI

Chlorine Dioxide

- Use it or lose it
- Mildly corrosive on Stainless Steel
- Not effective on wild yeast
- Expensive
- Must be activated

Pasteurization

Just Plain Heat

- Concentration not applicable
- Hold at 180°F for 30 min or more

Pasteurization

<u>Advantages</u>

- Most beer spoilers are killed below this temperature
- Penetrates soil load
- No chemical residue

Pasteurization

- Takes longer than other sanitizers
- Difficult to use on large equipment
- Can give beer a "cooked" flavor

Conclusion

- Clean well with a method that is appropriate for the application.
- Only after you have properly cleaned can you properly sterilize.

Thanks to Dana Johnson Of **Birko Corporation** for much of the data covered here