Basic Brewing Microbiology

Brewing Microbiology

 Reduction or Elimination of Unwanted Beer Spoilage Organisms

Detection of Beer Spoilage Organisms

Optimizing Brewing Yeast Fermentations

Craft Breweries vs Traditional Breweries

- Most craft breweries are not designed by brewery engineers or brewing microbiologists
- Brewhouse and fermentation equipment are very often in the SAME room
- Traditional breweries were designed to separate the hot/cold side of brewing
- Malt dust contains many beer spoilers

Microbiology of the Brewery

The Brewery is a dirty place

Sources of Potential Beer Spoilers

- Water
- Air
- Malt dust
- Traffic into the brewery
- Sewers
- Fruit flies or other critters

Aseptic Technique

What's practical?

- Room isolated from brewhouse to perform testing
- Aerial fallout must be minimized
- Testing wort/beer for contamination requires a clean space to work
- Clean clothes/lab coat reduces the chance of false positive results
- Hands must be sanitized with 70% isopropyl alcohol
- Lysol can be used on work surfaces

Aseptic Technique

- Vessels/bottles used to collect samples must be sterilized by heat
- Transfer pippetes must be bought presterilized or must be sterilized by heat
- Sample valves must be sprayed with 70% isopropyl and flamed
- Samples valves must not have dried wort/beer from previous sampling

Review: Sanitized vs. Sterilized

 Brewers must sanitize tanks, hoses, etc. due to practicality

 Laboratory supplies can be either sterilized in an autoclave or pressure cooker or purchased sterile

Lab supplies

Autoclave/Pressure cooker

15# pressure for 15 minutes

Pipette: Aseptic liquid transfer

HEPA/UV Lab air Filter

Beer is a relatively hostile environment

- Low pH
- Alcohol
- Anaerobic
- Cold stability
- Hop bittering compounds that inhibit most Gram + bacteria
- All beer has some microbial load

Quick and Dirty "Film Test" for Bottled Beer

- Bottle necks with a ring and beer/headspace interface
- Cloudiness
- Residue at the bottom of filtered beer
- Excessive foaming of opened/chilled beer
- Off-flavors or aromas

Microscopic Examination

Microscopic Examination

Yeast: Use the 40x objective(400 total magnification)

- % viability
- Yeast concentration

Bacteria: Use the 100x objective(1000 total magnification)

- Use oil immersion lens
- Whether cells are rods (bacilli) or round (cocci)
- The approximate length or diameter in microns
- The gram stain reaction
- Microscopic examination of beer samples has limited use. Very limited sensitivity compared to selective media

Brewer's Yeast(400x)

Brewer's Yeast (dead cells are blue)

Brewer's Yeast

Brettanomyces yeast 400x

Wild Yeast

Wild Yeast 400x

Brettanomyces 400x

Bacteria: Gram + Rods 1000X

Gram + Rods Lactobacillus 1000X

Gram – Rods(long) 1000X

Gram - Rods(short) 1000X

Gram + Cocci Pediococcus 1000X

Detection of Spoilage Organisms using Selective Media

LMDA(SDA)

- 7 ppm cycloheximide inhibits brewing yeast but allows wild yeast to grow
- Bromocresol green is used as a pH indicator for detecting acid producing beer spoilers
- Solid media is enumerative, colony counts possible
- All common beer spoilers grow on this media
- Not completely selective, allows non-brewery bacteria to grow as well as mold/bacillus spores

Growth of Bacteria and Wild yeast on LMDA

Enteric (wort spoiler)

Acetobacter

- Acetic acid bacteria (Acetobacter, Acidomonas)
- Gram-negative, strictly-aerobic rods common in plant material such as fruit and grain. Normally encountered in stored or fermenting wort and bottled beer. Produce acetic acid, which lowers pH and lends a vinegary flavor/odor. Recommended limit: 5 per 1ml sample or per 100-ml yeast-free sample.
- colony: greenish-blue
- colony size: 1-2mm
- colony texture: smooth
- Changes media color or cloudiness?: YES
- Bubble formation when exposed to peroxide? YES
- Turns royal purple when exposed to oxidase reagent? NO (Acetobacter), YES (Acidomonas)

Enteric (wort Spoiler)

Enteric bacteria (*Citrobacter, Enterobacter, Hafnia, Klebsiella, Obesumbacterium*)

- Gram-negative, facultatively-anaerobic rods common in water, soil, and plant material. Normally encountered in stored and fermenting wort. Produce sulfur compounds, fusel alcohols, phenolics and acetaldehyde, which cause a variety of off-flavors/odors. Recommended limit: 8 per 1-ml sample or per 100-ml yeast-free sample.
- colony: greenish-blue, yellowish-green
- colony size: 2-5mm, may spread to cover entire plate
- colony texture: smooth, slimy
- Changes media color or cloudiness?: NO
- Bubble formation when exposed to peroxide? YES
- Turns royal purple when exposed to oxidase reagent? NO (all except Obesum), YES (Obesum)

Lactobacillus

Lactic Acid Bacteria

- Iactic acid bacteria (Lactobacillus, Pediococcus)
- Lactobacillus (rod) and Pediococcus (coccus) are gram-positive, facultative anaerobes common in plant material such as fruit and grain. Encountered in all stages of brewing. Produce lactic acid, which lowers pH and lends a tart, sour flavor/odor. Recommended limit: 3 per 1-ml sample or per 100-ml yeast-free sample.
- colony: yellow-green (Pedio), white with bluish center (Lacto)
- colony size: 1-3mm
- colony texture: smooth (Pedio), rough or smooth (Lacto)
- Changes media color or cloudiness?: YES
- Bubble formation when exposed to peroxide? NO

Pediococcus

Bacteria Mixture

Other Brewing Testing Media

HLP

- Selective for Lactobacillus/Pediococcus
- Easy to prepare
- Autoclave/pressure cooker not needed
- Anaerobic only

Wild Yeast Media

- LCSM vs LWYM
- Detects non-Saccharomyces vs Saccharomyces
- Limited shelf life
- Commonly gives false positives
- Difficult to produce small quantities

HLP

Brewing Yeast grown on nonselective Universal Beer Agar

Simple Tests for Identifying Bacteria

- Colony characteristics on LMDA
 - Odor (vinegar, lactic, sulphur?)
 - Acid Production?(media turns from green to yellow)
 - Colony color, size, texture and shape
- Gram stain (purple or pink?)
- Catalase reaction (positive or negative?)

Hemacytometer Yeast Cell Counts

Protocols

Where and When to sample? Drawing samples Swabbing Wort Stability Test Plating Samples Directly Plating Samples Using Membrane Filtration

Wort Stability Test

Plating Beer Samples

Yeasted or unfiltered samples: Direct Plating of 1 ml samples

 Filtered Beer Samples: Membrane Filtration of 100ml samples concentrated on membrane. Membrane is then aseptically transferred onto LMDA plate

Membrane Filtration Plating

Plating Beer Samples

 After plating on selective LMDA, samples need to be incubated <u>aerobically</u> to isolate wild yeast, enterics and acetic acid bacteria

 Duplicate LMDA plates can be separately incubated <u>anaerobically</u> to isolate Lactobacillus and Pediococcus

Anaerobic Incubator

Catalase Test

 Bacteria that are catalase positive will produce bubbles on a glass slide when hydrogen peroxide is added

How to use a microscope

Monocular Head

52

Fig. 3: Counting area grid on a hemocytometer counting chamber. If the slurry sample being counted contains a dense population of cells, you can count only the five squares shown and multiply the results by 5.

Fig. 4: Close up view of a counting square showing an example protocol for arriving at accurate estimates of total cell count.

size (bottom), do not count it.

